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Chapter 8. Orthogonality
§8-1. Orthogonal Complements and Projections
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Orthogonal Bases



Orthogonality Basis

Definition (Orthogonality)
» Let X, ¥ € R". We say the X and ¥ are orthogonal if X-§ = 0.

» More generally, X = {X1,X2,...,Xk} € R is an orthogonal set if each
X; is nonzero, and every pair of distinct vectors of X is orthogonal, i.e.,
Xi-Xj=0foralli#j, 1<ij<k.

> Aset X = {X1,X2,...,%} C R" is an orthonormal set if X is an
orthogonal set of unit vectors, i.e., ||Xi|| =1 for all i, 1 <i <k.

M

Definition (Linearly Independence)

Let V be a vector space and S = {X1,X2,...,Xk} a subset of V. The set S is
linearly independent if the following condition holds:

S$1X1 +82Xo + -+ s Xk =0 = s1=83=---=s=0.



Lemma (Independent Lemma)

Let V be a vector space and S = {v1,Va,..., vk} an independent subset of
V. If u is a vector in V, but u ¢ span(S), then S = {vy,va,...,vi,u} is
independent.

— V.S. —

Lemma (Orthogonal Lemma)
Suppose {ﬂ, Fg, e Fm} is an orthogonal subset of R", and suppose X € R".
Define = = .

2 L, X-fi2 X oz X-fm 2

fmpl =X — ——— 12 1= —=— 22 2= T 2fm

I |I£2] [ |

Then

1. fny1 -G =0forallj,1<j<m.

2. X span{ﬂ,ﬂ, e ,fm}, then fim1 +£ 0, and {fl,fg, e ,fm,me} is an
orthogonal set.



Proof. (of orthogonal lemma)

(1) For any 1 <k <m

fm«l»l : fk

%1 % T %1,
_<ff 3 “;fm>.1
]2 |IE2][? |[feal |
Rl = Felne = R fn= =
=% f- X 2y B -
|I£2]]2 |I£2]| |[£a |
.
L Refer o
=X Ix — — 2 k k
|[fi||
B .



Proof. (continued)

(2) Since {f;, - -

. ,fm} are independent, by the unique representation

theorem, X € span{ﬂ7 ... ,Fm}, iff there exists unique representation for X

Using the fact

)?:a1F1+~--+amfm.

that {?1, e ,Fm} is orthogonal, one finds that
-
Lo e ——
1]

In other words,

—b_’ —b_‘ —l_'
L X-f1= X fo > X fm

iespan{Fl,'--,Fm} <— Fm“:xf - = e 2 oo R (]
|If1][2 |If=]]2 [[fm ]2

Now, X & span{ﬂ7 e ,Fm} implies that FmH 4 0.

Finally, {Fl, Fg, .. ,fm, fm_,.l} is orthogonal thanks to (1). [ |



Theorem
Let U be a subspace of R".

1. Every orthogonal subset {Fl, fo,..., Fm} of U is a subset of an
orthogonal basis of U.

2. U has an orthogonal basis.

Proof.

Algorithm 1: Proof of part (1) of Theorem
Input : An orthogonal set {f1,f,...,fm} C U C R"

m — n;

while span{ﬁ, e ,Fn} # U do
Pick up arbitrary X € U\ Span{ﬁ, e ,Fn};
Let Fm_l be given by the Orthogonal Lemma;
Then {ﬂ, 200 ol Fn+1} is an orthogonal set;
n+1— n;

end

Output: An orthogonal basis {ﬁ, e ,fn} of U

(2) If U = {0}, done. Otherwise, find an arbitrary nonzero vector in u and
run the algorithm in (1). [ ]



Theorem (Gram-Schmidt Orthogonalization Algorithm)
Let U be a subset of R® and let {X1,X2,...,Xm} be a basis of U. Let
f, = X1, and for each j, 2 <j <m, let

— rd — r —
Xj-fl—» Xj'fg—' Xj'fjfl—f L
H=ilo

B2
j = X5 —

= h— 5 f = —
[[£1]] [[£2]] [[£—1]
Then {Fh Fg, .. ,Fm} is an orthogonal basis of U, and

span{ﬂ,f;, e ,f;} = span{Xi,X2,...,Xj} Vj=1,--- m.



Algorithm 2: Gram-Schmidt Orthogonalization Algorithm

Input : A basis {X1,X2,...,Xm} C U CR"

Fl <—)?1;

for j - 2 tom do
. % -T2 R -Tpw R Fq=
fj%ij_xﬁ O B S “f .

IEll> - (lE2]]? |If5—11]?

end

Output: An orthogonal basis {f1,-- ,fm} of U s.t.
span{fl,fg,...,fj}:span{§1,)'('2,...,)'<'j}

forallj=1,---,m.




Span{él, 52,53} = Span{ghgz,gg}

basis — orthogonal basis




Problem
Let

O =

, and X3 =

"l
A
Il
O = O =
"L
N
Il
— = O
(en)

and let U = span{Xi,X2,X3}. We use the Gram-Schmidt Orthogonalization
Algorithm to construct an orthogonal basis B of U.

Proof.

First Fl = )_('1. Next,

1 1 0
p_|o]_2]of_]o
271 21 1] |o
1 0 1
Finally, /
1 1 0 1/2
p_ |t 1jof_ofo|_ 1
1o 2|1 10 —-1/2
0} 0 1 0



Proof. (continued)

Therefore,
1 0 1/2
0 0 1
1o || =172
0 1 0

is an orthogonal basis of U. However, it is sometimes more convenient to
deal with vectors having integer entries, in which case we take

1 0 1
0 0 2
B= 11710 (] —1
0 1 0

(Orthogonality of the set is not affected by multiplying vectors in the set by
nonzero scalars.) [ ]



The Orthogonal Complement U+



The Orthogonal Complement Ut

Definition

Let U be a subspace of R®. The orthogonal complement of U, called U
perp, is denoted Ut and is defined as

Ul ={XReR"|X-§=0forall ¥ € U}




Example

9 5 a
Let U = span S =1 ,and suppose V= | b | € UL. Then
1 2 @

—2a+3b+c=0 and 5a—b+2c=0.
This system of two equations in three variables has solution

—7
¥=[-9|t, WVteR,
13

which is noting but a line passing through origin and perpendicular with
the plane U.



Theorem (Properties of the Orthogonal Complement)
Let U be a subspace of R".

1. Ut is a subspace of R™.

2. {0} =R and (R*)* = {0}.

3. If U =span{y1,¥2,...,¥m}, then

Ul ={XeR"|R-§j=0forj=1,2,...,m}.

Proof.

1. This is a standard subspace proof and is left as an exercise.

2. Here, 0 is the zero vector of R". Since X-0 = 0 for all ¥ € R,
R™ C {0}*. Since {0} C R, the equality follows, i.e., {0}~ = R".

Again, since X -0 = 0 for all X € R, 0 € (R")*, so {0} C (R")*.
Suppose X € R*,  # 0. Since X-X = [|])? and X # 0,X-X#£0, so

% & (R™)*. Therefore, {0}° C ((R™)*)°, or equivalently, (R™)* C {0}.
Thus (R)* = {0}.



Proof. (continued)

3. Let X={X€R" |X-§j=0forj=1,2,...,m}.

“Ut C X7 Suppose that v € UL, Then ¥ is orthogonal to every vector
in U; in particular, V- §; = 0 for j = 1,2, ..., m since each such ¥j is in
U. Therefore, ¥ € X. This proves that Ut C X.

“X C UL Now suppose that v € X and @ € U. Then

i=aiy1 +azy2 + -

V- o=

-+ 4 amym for some aq,ag, ..

“(a1y1 +asy2 + -+ amym)
c(aryh) + V- (agy2) + -+ V- (am
a1(V-y1) +az(V-y2) + - -+ am(V-

<t <

.,am € R, and so

Fm)
Ym

).

Since v € X, V- §; =0 for all j, 1 <j < m. Therefore, V-1 = 0, and

thus X C UL,

Finally, since Ut C X and X C U™, we see that U+ = X.



Problem

Let
0 2
U = span _:1)’ , (1)
2 4

Find U™ by finding a basis of Ut.

Solution
a a (0] a 2

Ut = B e RrR? B . =0 and B ! =0
G @© 3 @© 0]
d d 2 d 4

This leads to the system of two equation in four variables

—b+3c+2d = 0
2a+b+4d = 0



Solution (continued)

A — 0 -1 3 210 U 1 0 3/2 310
2 1 0 4]0 01 -3 -2|0
Therefore,
3 3 r
—355 —23t —g g
1 S + 2t 4 N
U= = < eR s,t € R } =span 1110
t 0 | 1
3
-3 2
Since the set B = i’ , g is independent and spans U+, B is a
0 1
basis of U~. |
Remark

Notice that U+ = null(A), where A is the matrix whose rows are a

spanning subset of U.



Definition of Orthogonal Projection



Definition of Orthogonal Projection

Theorem (Projection Formula)

Suppose @ and ¥ are vectors in R®, ¥ % 0. Then the projection of i on v,
denoted as projz (1), is equal to

9 7= -V
projg (i) = W Ve

=1}

<1




roj;(1); then P is parallel to ¥, so p = tV for some t € R, and

Let p=p
U — p = U — tV is orthogonal to V, so
U—tv)-v = 0
U-v—tv-v = 0
v t19]|?
Since ¥ # 0,
t_ﬁ'-\‘/’
1¥(12

Therefore,




Remark
Note that

» (¥} is an orthogonal basis of the subspace U of R? consisting of the line
through the origin parallel to ¥.

> i — 5 U (since (i —p) ¥ =0).



Example ( Generalizing to R™ )

Suppose U is a subspace of R*, X € R*, and that {ﬂ, fg, e Fm} and
{g1,82,...,8m} are orthogonal bases of U. Define

N ”.f_" N H-F = ﬂ'f_v’m g
T <Xﬁ 12>f1+ (’ii) fo4-+ <Xﬁ 2)fm and
[Ifa ] [If= | [[fea|

~ X-g1 ) o X-ga )\ - X gm \ -
DPg = = g1+(ﬂ >g2+~~-+<ﬂi>gm.
¢ (I|g1\|2> ||g2]|2 ||€m||?

Then pt, pg € U (since they are linear combinations of vectors of U) and
X — P, X —DPg € Ut (by the Orthogonal Lemma). This implies that
Br — Bz € U, and (X — ) — (X — Pr) € UL. However,

(X = Pg) — (X — Pr) = Br — Pe,
and thus Pr — Pg is in both U and U~. This is possible if and only if
Pt — Pg = 0, i.e., Pr = Pg. This means that the computation of pr and Py
does not depend on which orthogonal basis is used.



Definition

Let {ﬁ7 Fg, ey Fm} be an orthogonal basis for a subspace U of R", and let
X € R". The projection of X on U is defined as

7\, (25\. A
[I£2] |I£21] [ |

Remark
1. if U = {0}, then proj g, (¥) = 0 for any X € R™;
2. if X € U, then projy(X) is also called the Fourier Expansion of X.
3. In Orthogonal Lemma

2= (Eha 4 ZEg g )
T

= projy(¥)



The Projection Theorem and its Implications



The Projection Theorem and its Implications

Theorem (Projection Theorem)
Let U be a subspace of R*, X € R", and p = proj;(X). Then
1. e Uand X — p e U,
2. p is the vector in U closest to X, meaning that for any ¥ € U, ¥ # p,

|IX =Bl < |IX = ¥1I.

»l

»l
\
Tl




Proof.

1. By definition, p € U, and by the Orthogonal Lemma, X — p € U+,
2. Let y € U, y # p. By the properties of vector addition/subtraction

X—§y=E-pP)+ (@B —-7).

Since R —p € Ut and p—§ € U,

E-p)-F-¥) =0
Hence, by Pythagoras’ Theorem,

1% = 311> = 1% = BlI* + |5 — 711"

Since ¥ # P, |[p — ¥|| > 0, so

1% = 71I* > |I% - BII*.
Taking square roots (since ||X — ¥|| and ||X — p|| are nonnegative),

1K =311 > [IX = Bll.



Example

Let
1 1 1 4
- |0 - |0 - |1 and ¥ — 3
X1 = 1 y X2 — 1 y X3 — 0 5 Vv = _2
0 1 0 )

We want to find the vector in U = span{X1, X2, X3} closest to V.

In a previous example, we used the Gram-Schmidt Orthogonalization
Algorithm to construct the orthogonal basis, B, of U:

1 0 1
0 0 2
B= 11710 || —1
0 1 0



Example (continued)

By the Projection Theorem,

| ot

R 2
projy(¥) =

O = 9 =

is the vector in U closest to V.

o OO

= W



Problem

Let
1 1 1
= 0 i 1 . 1
X1 = 1 y X2 — 1 5 and X3 = 0 )
0 0 0

and let U = span{X,X2,X3}. Find an orthogonal basis of U, and find the
vector in U closest to

Solution ( Outline )

First use the Gram-Schmidt Orthogonalization Algorithm to construct an
orthogonal basis of of U, and then find the projection of v on U.



Solution ( continued )

Gram-Schmidt orthogonalization with

fi = %,
L= moeug
[[f2]]?
o= gl Boohy
[[f2]]? |If21]
yields an orthogonal basis
1 0] 1
0 1 0
£} = 1 0|7 —1
0 0 0
Thus the vector in U closest of V is
1 1
., 1] 0 B 0|
projy (V) = 5| 1 + 5| -1 | =
0 0



Problem

Find the point q in the plane 3x +y — 2z = 0 that is closest to the point
po = (1,1,1).

Solution

Recall that any plane in R? that contains the origin is a subspace of R3.

1. Find a basis X of the subspace U of R? defined by the equation
3x+y—2z=0.

2. Orthogonalize the basis X to get an orthogonal basis B of U.
3. Find the projection on U of the position vector of the point pg.



Solution (continued)

1. 3x +y — 2z = 0 is a system of one equation in three variables. Putting
the augmented matrix in reduced row-echelon form

[3 1 —2]0]=[1 5 -5[0]

gives general solution x = %s + %t, y =s,z ="t for any s,t € R. Then

_1 2
3 3
U = span 1(,[ O
0 1
Let
—1 2
X = 3,0
0 3

Then X is linearly independent and span(X) = U, so X is a basis of U.



Solution (continued)

1. Use the Gram-Schmidt Orthogonalization Algorithm to get an

orthogonal basis of U:

—1
fi = & and f> =
0
Therefore,
B =

is an orthogonal basis of U.

(2) _ =2
5 10
-1 3
30,1
0 5




Solution (continued)

3. To find the point q on U closest to po = (1,1, 1), compute

1 =1 3
. 2 9
projy | 1 = — 3 | +5-| 1
1 10 0 35 5
1 4
= - 6
9

Therefore, q = (%, g, %)



Projection as a Linear Transformation



Projection as a Linear Transformation

Definition
Let V and W be vector spaces, and T : V — W a linear transformation.

1. The kernel of T (sometimes called the null space of T) is defined to be
the set
ker(T) = {¥ € V | T(¥) = 0}.

2. The image of T is defined to be the set

im(T) = {T(¥) | ¥ € V}.

Theorem
Let U be a fixed subspace of R", and define T : R" — R" by

T(X) = projy(X) for all X € R".

Then
1. T is a linear operator on R";
2. im(T) = U and ker(T) = U*;
3. dim(U) + dim(U+) = n.



Proof.
IfU = {6}, then Ut = R®, so T(X) = 0 for all ® € R®. This implies that

T = 0 (the zero transformation), and the theorem holds.

Now suppose that U # {0}. We first prove (3) based on (1) and (2):

3. Since T is a linear transformation — part (1), the Rank-Nullity
Theorem implies that

dim(im(T)) + dim(ker(T)) = dimR" = n.
Applying the result from part (2), we get

dim(U) + dim(U") = n.



Proof. ( continued )

1. Let B = {ﬁ,é, e Fm} be an orthonormal basis of U. Then by the
definition of projy (%),
TR) =R i +& )b+ + & o), (1)
(since ||fi[|> =1 for each i =1,2,...,m). Let %,7 € U and k € R. Then
TE+5) = (B+9) -Wh+(E+9) -BEh+ -+ (EF+7) )
= @ AL+7DE+ER E+7 - B)E+

i R I 47 f)
= E-hE+GF Dh+E bE+F B)E+
+ R )+ F - fn)
= R E+E-B)E+- + R )il
HE -+ F )+ + (7 )]

Thus X+ y € U, so T preserves addition.



Proof. ( continued )
1. (continued) Also,

T(k®) = ((k%) )+ (k%) -2
(k(Z-fi)h + k(&)
= k& - +kE&- b))

_|_
= k[E-f)fi + X-fo)fp + - --
— KT

Thus kX € U, so T preserves scalar multiplication.

Therefore, T is a linear transformation.



Proof. (continued)

2. By equation (1), T(X) € U because T(X) is a linear combination of the
elements of B C U, and therefore im(T) C U. Conversely, suppose that
X € U. By using Fourier Expansion, X = T(X), and thus X € im(T).
Therefore U C im(T). Since im(T) C U and U C im(T), im(T) = U.

To show that ker(T) = Ut, let X € Ut. Then X- E = 0 for each
i=1,2,...,m,s0 T(X) = 0, implying % € ker(T). Thus Ut C ker(T).
Conversely, let % € ker(T). Then T(X) = 0, so X — T(X) = X; but,

% — T(X) € U (Projection Theorem), so ¥ € U*, implying that

ker(T) C U, Since UL C ker(T) and ker(T) C U, ker(T) =U*. ®H
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